ERC Advanced Grant to Tilman Esslinger
Institute for Quantum Electronics (IQE)
ETH researchers have received eight of the coveted Advanced Grants in the European Research Council's (ERC) latest call for proposals, among them physicist Tilman Esslinger, who has been awarded such a grant already for the second time.
Detlef Günther, ETH Vice President Research and Corporate Relations, is especially pleased by the achievement of the successful ETH researchers: “Over many years, our researchers have been able to consistently compete with the very best and establish themselves internationally with their projects. This proves their tremendous scientific quality. But this success also demonstrates that talents can develop over the long term at ETH.”
Looking back at the ERC's first decade, which began in 2007 with the FP7 and Horizon 2020 programmes, ETH Zurich's impressive success rate is striking: with 66 grants, it's in third place in Europe when it comes to Advanced Grants. During this time, ETH researchers have received nearly a quarter of a billion euros (EUR 242.1 billion) and secured 134 ERC grants. These comprise 47 Starting Grants, 8 Consolidator Grants, 67 Advanced Grants, 11 Proof of Concepts – these complement a grant by preparing research for the market – as well as 1 Synergy Grant, for which groups consisting of two to four outstanding researchers have been able to apply during the (to date) two calls for proposals. Notably, the success rate of ETH applications was almost 30 percent across all grant categories; the average rate across all institutions is 11.4 percent.
Second ERC Advanced Grant for Tilman Esslinger
Tilman Esslinger, Professor of Quantum Optics, has been awarded a second ERC Advanced Grant. In his new project, he is examining elementary transport mechanisms in a system that obeys the laws of quantum physics. He wants to find out how matter, heat or magnetic orientation get from A to B. To do so, he and his group will cool atomic gases to temperatures of under 100 nanokelvins. The gases will be trapped in a complex arrangement of light cages and observed using highly sensitive cameras. Understanding transport systems like these is a prerequisite for the construction of devices and computers with new functionalities, in which the effects of quantum physics play a key role.