Tanz mit dem Feind
Astrophysics (IPA)
Anlässlich der "R Aquarii-Woche" zeigt die Europäische Südsternwarte ESO das schärfste Bild des symbiotischen Doppelsterns, welches je gemacht wurde. Aufgenommen wurde es von einem Team rund um den ETH-Physiker Hans Martin Schmid.
Dieses spektakuläre Bild liefert detaillierte Einblicke in das dramatische Sternenduo, den Doppelstern R Aquarii. Obwohl die meisten Doppelsterne durch die Schwerkraft einen eleganten Walzer aufführen, ist die Beziehung zwischen den Sternen von R Aquarii weit weniger friedlich. Trotz seiner winzigen Grösse entzieht der kleinere der beiden Sterne dieses Paares seinem sterbenden Begleiter — einem Roten Riesen — ständig Material.
Jahrelange Beobachtungen haben die besondere Geschichte hinter dem Doppelstern R Aquarii enthüllt, der im Zentrum dieses Bildes zu sehen ist. Der grössere der beiden Sterne, der rote Riese, gehört zur Klasse der Sterne, die als Mira-Veränderliche bekannt ist. Am Ende ihres Lebens beginnen diese Sterne zu pulsieren und werden 1000 mal so hell wie die Sonne, wenn sich ihre äusseren Hüllen ausdehnen und in die Leere des Alls geworfen werden.
Der Todeskampf dieses riesigen Sterns ist bereits dramatisch, aber der Einfluss des begleitenden Weissen Zwergsterns verwandelt diese spannende astronomische Konstellation in ein dunkles kosmisches Schauspiel. Der Weisse Zwerg — der kleiner, dichter und viel heisser ist als der Rote Riese — entzieht seinem grösseren Gefährten Material aus den äusseren Schichten. Die von diesem sterbenden Riesen abgeworfenen Jets aus Sternenmaterial ragen hier von R Aquarii nach aussen hinaus.
Gelegentlich sammelt sich auf der Oberfläche des Weissen Zwerges genügend Material an, um eine thermonukleare Nova-Explosion auszulösen, ein gewaltiges Ereignis, das eine grosse Menge an Material in den Weltraum wirft. Die Überreste vergangener Nova-Ereignisse sind in dem schwachen Gasnebel zu sehen, der auf diesem Bild von R Aquarii ausgeht.
R Aquarii liegt nur 650 Lichtjahre von der Erde entfernt — astronomisch gesehen ein naher Nachbar — und ist einer der symbiotischen Doppelsterne, die der Erde am nächsten sind. Aus diesem Grund hat dieser faszinierende Doppelstern seit Jahrzehnten besondere Aufmerksamkeit von den Astronomen erhalten. Die Aufnahme eines Bildes der unzähligen Merkmale von R Aquarii war für Astronomen eine perfekte Möglichkeit, die Fähigkeiten des Zurich IMaging Polarimeter (ZIMPOL) zu testen, einer Komponente des Planetensuchgeräts SPHERE. Die Ergebnisse übertrafen jenen von Beobachtungen aus dem Weltraum — das hier gezeigte Bild ist noch schärfer als die Beobachtungen des berühmten NASA/ESA Hubble-Weltraumteleskops.
SPHERE wurde in jahrelanger Studien- und Konstruktionsarbeit entwickelt, um sich auf eines der anspruchsvollsten und spannendsten Gebiete der Astronomie zu konzentrieren: die Suche nach Exoplaneten. Durch den Einsatz eines hochmodernen adaptiven Optiksystems und spezieller Instrumente wie ZIMPOL kann SPHERE die anspruchsvolle Aufgabe der Direktabbildung von Exoplaneten erfüllen. Die Fähigkeiten von SPHERE sind jedoch nicht auf die Jagd nach schwer zu findenden Exoplaneten beschränkt. Das Instrument kann auch zum Studium einer Vielzahl astronomischer Quellen verwendet werden – wie dieses faszinierende Bild der stellaren Besonderheiten von R Aquarii zeigt.
Weitere Informationen
Diese Forschung wurde in der Arbeit "SPHERE / ZIMPOL observations of the symbiotic system R Aqr I. Imaging of the stellar binary and the innermost jet clouds" von H. M. Schmid et al. vorgestellt, die in der Zeitschrift Astronomy & Astrophysics veröffentlicht wurde.
Das Team bestand aus H. M. Schmid (ETH Zürich, Schweiz), A. Bazzon (ETH Zürich, Schweiz), J. Milli (European Southern Observatory), R. Roelfsema (NOVA Optical Infrared Instrumentation Group bei ASTRON, Niederlande), N. Engler (ETH Zürich, Schweiz), D. Mouillet (Université Grenoble Alpes und CNRS, Frankreich), E. Lagadec (Université Côte d'Azur, Frankreich), E. Sissa (INAF und Dipartimento di Fisica e Astronomia "G. Galilei" Universitá di Padova, Italien), J.-.F. Sauvage (Aix Marseille Univ, Frankreich), C. Ginski (Leidener Sternwarte und Anton Pannekoek Astronomisches Institut, Niederlande), A. Baruffolo (INAF), J.L. Beuzit (Université Grenoble Alpes and CNRS, Frankreich), A. Boccaletti (LESIA, Observatoire de Paris, Frankreich), A. J. Bohn (ETH Zürich, Schweiz), R. Claudi (INAF, Italien), A. Costille (Aix Marseille Univ, Frankreich), S. Desidera (INAF, Italien), K. Dohlen (Aix Marseille Univ, Frankreich), C. Dominik (Anton Pannekoek Astronomisches Institut, Niederlande), M. Feldt (Max-Planck-Institut für Astronomie, Deutschland), T. Fusco (ONERA, Frankreich), D. Gisler (Kiepenheuer-Institut für Sonnenphysik, Deutschland), J.H. Girard (Europäisches Südobservatorium), R. Gratton (INAF, Italien), T. Henning (Max-Planck-Institut für Astronomie, Deutschland), N. Hubin (Europäisches Südobservatorium), F. Joos (ETH Zürich, Schweiz), M. Kasper (European Southern Observatory), M. Langlois (Centre de Recherche Astrophysique de Lyon und Aix Marseille Univ, Frankreich), A. Pavlov (Max-Planck-Institut für Astronomie, Deutschland), J. Pragt (NOVA Optical Infrared Instrumentation Group bei ASTRON, Niederlande), P. Puget (Université Grenoble Alpes, Frankreich), S.P. Quanz (ETH Zürich, Switzerland), B. Salasnich (INAF, Italien), R. Siebenmorgen (European Southern Observatory), M. Stute (Simcorp GmbH, Deutschland), M. Suarez (European Southern Observatory), J. Szulagyi (ETH Zürich, Schweiz), C. Thalmann (ETH Zürich, Schweiz), M. Turatto (INAF, Italien), S. Udry (Observatorium Genf, Schweiz), A. Vigan (Aix Marseille Univ, Frankreich) und F. Wildi (Observatorium Genf, Schweiz).